Ячеистая mesh. WiFi Mesh сеть — что это такое и как работает? Что такое Mesh система

Ячеистые сети - это распределенная система передачи данных. Все узлы в этой сети соединяются, обмениваются сигналами и совместно усиливают его, не используя центральный сервер. Узлом в этом случае становится любое устройство, которое одновременно может получать и передавать данные, - например мобильный телефон.

Ячеистые сети существуют давно: например, в 1980-е годы они использовались в военных целях - для налаживания связи между бойцами, которые находятся друг от друга на большом расстоянии. На рынок эти сети вышли в 1990-е, но не пользовались популярностью из-за примитивности технологии, которая позволяет делиться данными напрямую. Однако после того как стартап Eero представил свою ячеистую технологию в 2015 году, похожие системы покупателям предложили и крупные компании - Google и D-Link.

Как это работает?

Представьте множество устройств, которые связаны между собой беспроводной связью, - все они взаимодействуют друг с другом для приема и передачи данных. К примеру, если это сотовый телефон, то при подключении он становится и роутером. При этом каждый новый пользователь расширяет зону покрытия сети.

Остальное проще объяснить на примере: после урагана Сэнди, когда интернет был недоступен, людям помогала обмениваться сообщениями ячеистая сеть - они подключались к ней с помощью Bluetooth. Протестующие использовали ячеистую сеть в Гонконге с помощью приложения FireChat; узлами в этом случае выступали телефоны, которые образовывали сеть из равноправных участников. Сотовые операторы или провайдеры не могут отключить ее. Даже если отобрать у активистов часть телефонов, то оставшиеся устройства все равно смогут передавать друг другу информацию и сигнал. Но это выход не в глобальный интернет, а прототип мини-интернета между этими устройствами.

Погодите, то есть в «Фейсбук» с помощью этой технологии не зайти?

Позволяет, просто это другой виток развития ячеистых сетей. Если хотя бы одно устройство в ней имеет доступ к «большому интернету», то ее получат и другие участники сети. Если упростить, это несколько передатчиков, которые связаны между собой и Wi-Fi роутером с измененной технологией. Все эти устройства равномерно распределяют интернет по территории, на которой они располагаются, - например по большому дому или даже городу.

Например, в Нью-Йорке существует сеть NYC Mesh, которая устанавливает на крыше большие антенны для раздачи интернета, которые подключаются к роутерам жителей этих домов. Сеть живет на добровольные пожертвования.

В чем отличие от обычного доступа к интернету?

Представьте, что вам нужно отправить электронное письмо. Для этого вам нужен компьютер, ноутбук или телефон, который подключен к проводному или беспроводному интернету, чтобы запросить доступ в интернет у локального оператора. После этого устройство присоединяется к центральному хабу - точке Wi-Fi, сетевому коммутатору или сотовой станции.

Но в некоторых случаях такое средство общения неудобно. Представим, что вам нужно отправить один файл ста людям. Ваш файл должен пройти через длинный путь нескольких хабов, пока он не достигнет сервера электронной почты. Чтобы получить его, людям нужно сто раз загрузить этот файл к себе с помощью подключения к интернету. Чтобы упростить этот процесс, появились ячеистые сети, где обмен информацией происходит между устройствами напрямую, без центрального хаба.

И для чего это нужно?

Ячеистые сети называют следующим шагом в развитии беспроводных сетей, потому что они решают проблему «мертвых зон» в больших помещениях, - интернет будет распределен по всему помещению равномерно. Обычно небольшая сеть состоит из двух или трех узлов и роутера, который обеспечивает соединение с интернетом. К этой сети вы можете добавить еще несколько узлов, если они требуются, их количество не ограничено. Активисты свободного доступа к интернету стараются популяризировать идею бесплатной сети во всем мире - причем чем больше людей в этом будет участвовать, тем быстрее это произойдет.

Стоит ли покупать домой ячеистую сеть?

Зависит от того, что вам нужно. В случае, если вы хотите использовать ее дома для получения более стабильного сигнала, даже производители советуют устанавливать такую систему в помещениях, если они больше 230 квадратных метров. Они также могут пригодиться в домах, которые построены из кирпича, со стенами из гипса или другого материала, который блокирует сигнал Wi-Fi. В других случаях хороший Wi-Fi роутер, который будет правильно установлен в помещении - в центре, далеко от стен, - сможет справиться с нагрузками.

Большое пространство - не единственный критерий. Ячеистые сети стали актуальны и из-за количества устройств, которые требуют подключения к интернету, - если вы пользуетесь умной камерой на двери, то сигнал вашего роутера может до него попросту не дотянуться. Особенно если в другой комнате у вас стоит Alexa, а на кухне - умный чайник.

А минусы у него есть?

Да. В первую очередь, если вы подключены не к роутеру, а к более мелким узлам - скорость интернета будет ниже. Например, ваш роутер стоит в гостиной, а в спальне и коридоре - узлы. Если вы будете смотреть видео в спальне, то скорость замедлится, потому что роутер будет передавать данные сначала узлу, а он, в свою очередь - на ваш ноутбук. Во-вторых, ячеистая система для дома стоит дорого.

Я решил, что мне нужна такая сеть, к чему стоит присмотреться?

Если стоимость не отпугивает вас, то присмотритесь к крупным производителям. Например, первая компания, которая занялась продажей ячеистых сетей для дома, - Eero - предлагает роутер и два узла за $300. Примерно такое же количество устройств, с чуть измененными параметрами, от Google Wifi стоят $179, а у Linksys такую систему можно купить за $300. Перед покупкой лучше поискать рецензии СМИ, зачастую зарубежные издания тестировали их у себя в редакциях.

Удалось ли построить какую-то большую ячеистую сеть?

Да, одна из самых больших крупных сетей - Guifi - сейчас находится в Каталонии и Валенсии, состоит из 33 тыс. узлов. Она появилась еще в начале нулевых, когда местные жители устали ждать появления в регионе нормального интернет-провайдера. Они настроили несколько роутерев, договорились с администрацией и установили оборудование в стратегических точках города. Сеть стартовала с одной Wi-Fi ячейки и расширялась постепенно. Сейчас Guifi развивается на общественных началах и подключение к ней доступно совершенно бесплатно через мобильную сеть. Другой пример - похожий проект AWMN в Греции, где сеть появилась в 2003 году, его цель также была в том, чтобы выстроить большую сеть. К тому времени, как услуги по широкополосному подключению перестали быть редкостью в Афинах, успел добраться до более удаленных регионов Греции и даже соединиться с узлом в Словении.

Беспроводные сети являются одним из самых перспективных направлений развития современных телекоммуникационных технологий. Перспективы их использования связаны, во-первых, с заменой кабельной инфраструктуры на радиоэфир; во-вторых, с новыми возможностями коммуникаций между различными устройствами. При этом наряду с построением централизованных сетей, интерес представляет использование элементов децентрализации, которые присутствуют в ячеистых (mesh) сетях.

Особенности ячеистой топологии

Беспроводная ячеистая сеть (Wireless Mesh Network - WMN) образуется на основе множества соединений «точка–точка» узлов, находящихся в области радиопокрытия друг друга (mesh peertopeer, multi-hop). Ключевое свойство самоорганизации ячеистых сетей заключается в том, что, во-первых, соединения между узлами устанавливаются автоматически; во-вторых, любой узел может выполнять функции транзитной передачи пакетов (маршрутизации) для других участников сети.

Сеть на основе ячеистой топологии характеризуется высокой надежностью, большой пропускной способностью и сниженным энергопотреблением. Высокая надежность обеспечивается избыточностью узлов (при отказе одного узла данные будут передаваться в обход, по другому пути). Использование нескольких альтернативных маршрутов повышает пропускную способность сети. Снижение энергопотребления достигается снижением мощности сигналов посредством передачи данных через большее количество узлов, разделенных меньшими расстояниями.

Рис. 1. Ячеистая (mesh) топология

Одноранговые mesh-сети способны стихийно возникать в тех местах, где необходимо взаимодействие между пользователями, и исчезать, когда эта потребность отпадает. Такие сети могут быть построены на основе только клиентского беспроводного оборудования. Однако большинство существующих mesh-технологий в беспроводных сетях используются на уровне устройств доступа к сети (инфраструктурные сети).

Область применения ячеистой топологии

Общепринята классификация беспроводных сетей по функционально-территориальному признаку (по аналогии с проводными сетями) на персональные (Wireless Personal Area Network - WPAN), локальные (Wireless Local Area Network - WLAN), городские (Wireless Metropolitan Area Network - WMAN) и глобальные (Wireless Wide Area Network - WWAN). При этом сопоставление беспроводных технологий соответствующим классам сетей достаточно условно, так как современные разработки в сфере беспроводных коммуникаций имеют широкие возможности использования. Область применения каждой конкретной технологии определяется множеством связанных друг с другом параметров, таких как пропускная способность, энергопотребление, стоимость оборудования, дальность передачи, диапазон частот, возможные топологии, качество обслуживания, безопасность и т. д.

Ячеистая топология для экономичных низкоскоростных сетей успешно реализована в технологии ZigBee. Низкое энергопотребление позволяет использовать эту технологию в беспроводных сетях датчиков (Wireless Sensor Network) и различных бытовых устройств в рамках концепции цифрового дома (Digital Home), в компьютерных устройствах беспроводных персональных сетей WPAN, не предъявляющих высоких требований к скорости каналов связи (пульты управления, джойстики, мыши и т. д.). Низкая пропускная способность (до 250 кбит/c) ограничивает применение ZigBee для передачи больших объемов данных и мультимедиа-трафика.

С беспроводными локальными сетями WLAN традиционно связывают технологию Wi-Fi, построенную на основе семейства стандартов IEEE 802.11. В настоящее время для данной технологии стандартизирована пропускная способность 54 Мбит/c (IEEE 802.11a/g), которая приемлема для решения многих задач, не требующих сверхскоростных каналов связи. Использование 802.11 не ограничивается только локальными сетями. Технологии семейства IEEE 802.11 успешно применяются как в персональных сетях для соединения устройств в рамках личного пространства пользователя, так и для соединения разделенных многими километрами сетей. Ячеистая топология реализована в исследовательских проектах по организации сетей MANET (Mobile Ad Hoc Network), использующих режим Ad hoc IEEE 802.11b.

Вопросы использования ячеистой топологии в беспроводных глобальных (WWAN) и городских (WMAN) сетях также активно изучаются. Например, в рамках рабочей группы IEEE 802.16, которая занимается стандартизацией технологии WiMAX (Worldwide Interoperability for Microwave Access), ведутся исследования mesh-технологий.

Ячеистая топология в беспроводных локальных сетях

Ячеистая топология в WLAN используется для объединения точек доступа в беспроводную систему распределения сообщений (Wireless Distribution System - WDS). WDS предназначена для замены проводных каналов взаимодействия устройств доступа к сети на беспроводные.

Очевидно, что для представленной организации сети необходимы изменения в протоколах физического, канального уровней и маршрутизации. Беспроводные ячеистые сети имеют определенные особенности, связанные с применением как беспроводной среды передачи, так и ячеистой топологии.

Использование беспроводной системы распределения увеличивает трафик, передаваемый по каналам, что повышает требования к физическому уровню. Одним из путей решения данной проблемы для существующих протоколов радиопередачи является разделение взаимодействия точек доступа между собой (5 ГГц IEEE 802.11a) и точек доступа с клиентами (2,4 МГц IEEE 802.11g/b), что и сделано в большинстве реализаций. Альтернативный подход заключается в использовании одного частотного диапазона для всех коммуникаций, что требует от разработчиков протоколов физического уровня усовершенствования и оптимизации технологий модуляции, кодирования и передачи (Multiple Input Multiple Output - MIMO, многоканальные и многоантенные системы и т. д.).

Классический протокол 802.11 MAC также имеет ограничения для применения в mesh-сети. Во-пер вых, данный протокол ориентирован на одно соединение, а ячеистая топология подразумевает множество одновременных соединений с соседними узлами. Во-вторых, 802.11 MAC описывает только передачу данных между двумя узлами (onehope), и транзитная доставка сторонним узлам (multi-hop) выходит за рамки его применения.

Рис. 2. Инфраструктурная mesh-сеть

Решение последней задачи (схожей с маршрутизацией в обычных сетях) возможно как на сетевом, так и на канальном уровнях. При этом протокол транзитной доставки должен эффективно использовать множество возможных маршрутов, иметь интеллектуальный механизм выбора оптимального пути, быть надежным и отказоустойчивым, в то же время быть масштабируемым и совместимым с различными технологиями радиопередачи.

Маршрутизация на сетевом уровне обладает высокой совместимостью и расширяемостью в силу независимости от нижележащих протоколов. На сетевом уровне работает протокол PWRP (Predictive Wireless Routing Protocol), разработанный компанией Tropos Networks. PWRP во многом аналогичен известному протоколу маршрутизации для проводных сетей OSPF (Open Shortest Path First). Другими протоколами маршрутизации для mesh-сетей являются TBRPF (Topology Broadcast Reverse Path Forwarding) компании Firetide Networks, LQSR (Link Quality Source Routing) от Microsoft, AODV (Ad hoc On-demand Distance Vector) и др.

Однако максимальная эффективность достижима при тесном взаимодействии с используемыми технологиями радиопередачи, что возможно на канальном уровне. Примером может служить AWPP (Adaptive Wireless Path Protocol) компании Cisco Systems.

В настоящее время решения разных производителей несовместимы друг с другом. Однако работы по стандартизации ведутся в рамках рабочей группы IEEE 802.11s (ESS Mesh Networking Task Group). Областью исследования этой группы является разработка расширенного набора служб (Extended Service Set - ESS) для mesh-топологии в беспроводной системе распределения сообщений на базе протоколов IEEE 802.11 для физического и канального уровней.

Очевидно, что функциональность, связанная с реализацией ячеистой топологии, породит новые уязвимости и возможности для атак. Поэтому защищенность протоколов транзитной доставки пакетов является актуальной темой для исследований.

В то же время для централизованно управляемых, корпоративных mesh-сетей применимы концепции надежно защищенной сети (Robust Security Network - RSN), описываемые в стандарте IEEE 802.11i. Концепция RSN основана на существовании только надежно защищенных сетевых соединений (RSN Association - RSNA) между всеми участ никами сетевых взаимодействий в беспроводной среде на уровне доступа к сети.

RSNA использует защищенную аутентификацию, принцип контроля доступа по порту и управление криптографическими ключами (протокол аутентификации IEEE 802.1X). Конфиденциальность и целостность передаваемой информации обеспечивают протоколы TKIP (Temporal Key Integrity Protocol) или CCMP (Counter Mode with CBC-MAC).

Вместо заключения

Дальнейшее развитие беспроводных ячеистых технологий независимо от типа и архитектуры сети определяется следующими факторами:

  • совершенствованием технологий радиопередачи;
  • адаптацией существующих и разработкой новых беспроводных протоколов MAC-уровня для многоточечных мобильных соединений;
  • повышением надежности и преодолением ограничений к расширяемости и мобильности протоколов маршрутизации для mesh-сетей;
  • обеспечением качества обслуживания (Quality of Service - QoS), чувствительного к задержкам трафика;
  • обеспечением безопасности mesh-технологий.

Именно эти вопросы должны решить разработчики стандарта IEEE 802.11s, издание которого может стать отправной точкой повсеместного внедрения mesh-технологий в компьютерных сетях.

Литература

  1. Akyildiz I. Wang X. Wang W. Wireless Mesh Networks: a survey // ScienceDirect. 2004. http:// www.sciencedirect.com.
  2. http://www.zigbee.org.
  3. http://www.wi-fi .org.
  4. http://www.wimaxforum.org.
  5. Построение беспроводных сетей будущего. Intel. http://www.intel.com.
  6. Cisco Wireless Mesh Networking Solution. http://www.cisco.com.
  7. Nortel - Wireless Mesh Network Solution. Nortel. http://www.nortel.com.
  8. Self-Organizing Neighborhood Wireless Mesh Networks - Microsoft Networking Research Group. 2005. http://research.microsoft.com/mesh/.
  9. http://www.fi retide.com/.
  10. http://tropos.com.
  11. http://strixsystems.com.
  12. http://belairnetworks.com.
  13. IEEE Std 802.11i – 2004

Что такое mesh сеть (ячеистая сеть)? Для лучшего понимания можно представить конструкцию набором взаимосвязанных маршрутизаторов, составляющих сетевые узлы (точки). Эти сетевые узлы взаимосвязаны между собой с целью обеспечения покрытия Интернет на более обширной территории, нежели только в границах одного частного дома. Ячеистая сеть характерна тем, что обеспечивает доступ в Интернет практически в любой точке зоны покрытия узлов. К примеру, по всей площади многоэтажного дома или на территории, охватывающей несколько городских кварталов.

Домашняя mesh — это не единственная конфигурация, которая относится к ячеистой топологии. Одни mesh сети, являясь беспроводными, объединяют намного больше устройств, чем просто домашние устройства.

Другие mesh сети являются полностью проводными. Беспроводная ячеистая сеть наиболее применима к среднестатистическому потребителю. В целом существует несколько типичных исполнений mesh сетей:

Узкоспециализированная (ad-hoc) mesh сеть

Непрерывные конструкции часто создаются как способ взаимодействия устройств, когда соответствующая инфраструктура отсутствует непосредственно на местах.

FireChat — один из примеров мобильного приложения, которым используется Bluetooth, чтобы пользователи могли получить возможность общаться друг с другом без доступа в сеть Интернет.

Связь для доступа к другим пользователям осуществляется путём передачи данных через соседние устройства.

Типичная конфигурация, предоставляющая услуги для самых разных пользователей: 1 – Интернет; 2 – Базовая станция; 3 – Беспроводная сенсорная конструкция; 4 – Поисково-спасательный робот; 5 – Беспроводная «Ad-Hoc»; 6 – Конструкция Wi-Fi; 7 – Беспроводная домашняя mesh

Некоторые интеллектуальные домашние продукты, подобные «SmartThings» от Samsung, способны взаимодействовать с другими компонентами всей mesh системы (датчиками, сигнализациями и др.).

Всё это используется для выполнения определенных задач без необходимости установки связи с основным центром.

Домашняя ячеистая структура

Mesh сеть, предназначенная для домашних пользователей, обеспечивает по всей жилой площади в доме или небольшом офисе.

Для обеспечения полного покрытия используются нескольких маршрутизаторов. Существует ряд mesh систем, таких как «Google Wi-Fi» или «Orbi» от NETGEAR.

Муниципальная ячеистая структура

Сообщества или муниципальные mesh сети очень похожи на структуры, что создаются для домашних условий. Исключения отмечаются только в одном.

Вместо устройства внутри одного здания, структура охватывает район или целый город. Продукт «FabFi» — показательный пример устройства ячеистой (mesh) сети в масштабах города.

Как работает mesh сеть Wi-Fi

Условно домашнюю ячеистую сеть можно представить как цепочку ссылок. Каждая ссылка (узел mesh) открывает подключение к другим ссылкам.

Очевидно – созданная таким образом цепочка (сеть) способна покрывать дальние расстояния. Значительно более дальние, чем любая единичная ссылка (узел).

Обеспечивается дальность привязкой узлов друг к другу независимо от того, какое количество узлов присутствуют.

Для того чтобы трансформировать стандартный Wi-Fi в mesh сеть, необходима соответствующая настройка, при помощи которой устанавливается конфигурация под несколько узлов.

Затем организуется основной узел на модеме, которому отводится роль обычного маршрутизатора. Далее осуществляется подключение дополнительного узла к первому.


Новые разработки миниатюрных маршрутизаторов обещают сделать ячеистые сети ещё более универсальными в плане возможного применения на благо социума

Аналогичным образом подключается третий, четвертый и т.д. узел, взаимодействующий с другими соседними узлами, чтобы обеспечить сервис Wi-Fi как можно дальше от основного узла, где находится модем.

Mesh сетевые системы созданы специально под цели организации трафика маршрутизаторов. Устройства работают в тандеме по умолчанию. Поэтому пользователю нет необходимости владеть какими-то специальными знаниями относительно настройки.

В качестве примера рассмотрим домашний вариант, где соединение провайдера Интернет заведено в помещение подвала.

Линия интернет-провайдера подключается к модему, как и один из узлов mesh системы. Другие узлы подключаются в разных комнатах дома, тем самым усиливая сигнал Wi-Fi для уверенного прохождения по всей площади строения.

Плюсы и минусы домашней mesh сети

Отмечаются как преимущества, так и недостатки. Однако в любом случае, если есть нужда в обеспечении Wi-Fi, ячеистая сеть вполне разумная идея.

Плюсы технологии

  • доступ устойчивого Wi-Fi в границах любой комнаты дома;
  • обеспечение доступа в Интернет в отсутствии Ethernet-соединений или удаления от основного маршрутизатора;
  • если узел завершает работу или блокируется помехой, mesh сеть остаётся активной, пока функционирует соседний узел;
  • обеспечивается стабильность и плавность работы, учитывая взаимодействие узлов без непосредственного обращения к центральному маршрутизатору;
  • простота установки и управления в большинстве случаев, так как контроль осуществляется мобильным приложением под мобильные устройства;
  • расширение ячеек и обновление приложения выполняется так же просто, как подключение одного стандартного узла к розетке;
  • цена установки зачастую ниже, чем для традиционного варианта, учитывая простоту добавления узлов и необходимость протягивания кабелей;
  • большинство узлов mesh конструкции малогабаритные, компактные, не имеют внешних антенн.

Минусы технологии

  • mesh система обычно по стоимости превосходит традиционный маршрутизатор;
  • большое число ячеек требуется разносить по территории всего дома;
  • установка mesh конфигурации нецелесообразна, если площадь дома составляет менее 450 м 2 .

Некоторые особенности работы Wi-Fi


Рост популярности интеллектуальных домашних устройств и бесчисленных потоковых медиа-сервисов, таких как Hulu, Netflix и Spotify, обеспечит покрытие Wi-Fi в любом месте

Очевидный момент — если устанавливаются несколько узлов в жилом доме, каждая из этих рабочих точек способна работать на полной скорости.

Другими словами, когда интернет-провайдер предоставляет трафик на скорости 30 Мбит/с, и в доме задействованы три рабочих точки, все они допускают работу на той же скорости — 30 Мбит/с.

Однако такая работа не поддерживается mesh конфигурацией. Все три ячейки в примере выше, если они используются на максимальной мощности, равномерно разделят 30 Мбит/с, выделенные на домашнее потребление. То есть реально на каждую отдельно взятую ячейку придётся по 10 Мбит/с.

Полоса пропускания, установленная для домашнего варианта, поддерживает определённую скорость независимо от особенностей работы локальной сети.

Пользователь может иметь один маршрутизатор, ячеистую сеть, допустим, состоящую из 4 или 15 ячеек, на которые распространяется поддерживаемая пропускная способность.

Технология MESH - надежное профессиональное решение по гарантированной передаче широкополосных данных с мобильных объектов.

В целях организации беспроводных систем связи для передачи данных в настоящее время используется системы широкополосного доступа, которые можно разделить по функциональному назначению на следующие классы:

WLAN – беспроводные локальные сети связи.

Оборудование WLAN используются для организации беспроводной сети Ethernet в пределах офиса. Оборудование разрабатывалось для работы на небольшом расстоянии, до 100 метров. Наиболее известными представителями WLAN являются продукты, использующие технологии 802.11a/b/g (Wi-Fi). Типовая дальность действия оборудования WLAN обычно не превышает 30-50 метров, однако применение усилителей и направленных антенн позволяет её увеличивать. Типовой диапазон частот оборудования WLAN – 2,4; 5 ГГц. Существующее положение «О порядке использования на территории РФ внутриофисных систем передачи данных в полосе частот 2400-2483,5 ГГц» практически вылилось в повсеместное использование внутриофисных решений вне офисов.

Из-за низкой стоимости изделий WLAN и облегченного «частотного вопроса» в России очень многие сети БШД строились и продолжают строиться именно на основе оборудования WLAN с применением внешних антенн и дополнительных усилителей. Основные недостатки WLAN – коллизионный доступ, резкое и непрогнозируемое падение скорости с увеличением дальности и количества пользователей, необходимость применения внешних антенн и усилителей. Технология, на наш взгляд, является практически бытовой и по нашему опыту не подходит для решения задач, где требуется гарантированное время доставки информации.

MAN (внутригородские сети ), WAN (Wireless Access Network)

Оборудование данного класса специально разработано для организации крупных сетей масштаба города или отдельного региона с гарантированным качеством услуг. Типовой диапазон частот оборудования WLAN – 2,4; 3,5; 5 ГГц. Оборудование имеет развитые системы мониторинга, управления элементами системы, легко и гибко масштабируется с расчетными параметрами качества. Оборудование принципиально создавалось для наружного использования.

Технология MESH

В рамках данной классификации сети связи можно разделить на системы для фиксированных и мобильных объектов. Кроме того, новое поколение оборудования может использовать современную технологию MeSH.

В чем же отличие обычных сетей от самоорганизующейся сетевой архитектуры MeSH?

К примеру, так выглядит стандартная сеть Wi-Fi, представленная на следующей схеме:

Если такую сеть дополнить специализированными аппаратными средствами и программным обеспечением, ее структура измениться в MeSH архитектуру:

Казалось бы, новая архитектура MeSH позволяет улучшить возможности стандартной сети, однако и такая схема имеет свои недостатки, а именно:

Ограниченные возможности инфраструктуры (абоненты, которые вне зоны действия инфраструктуры не имеют связи с сетью)

- прерывание связи при сбоях в сети (в случае выхода из строя одного из элементов инфраструктуры, абоненты в этой зоне действия разрываются от сети)

- отсутствие мобильности и hand-over (при движении объекта абоненты теряют связь с инфраструктурой сети)

- подверженность к интерференциям со стороны других сетей (при возникновении помех элементы инфраструктуры сети могут терять связь с инфраструктурой и абонентами)

Настоящая революция свершилась благодаря разработанной цифровой интегральной схеме ASIC, позволившей устранить не только все недостатки обычных MeSH сетей, но достигнуть новых возможностей.

Микрочип центрального процессора, встраиваемый во все устройства MEA MeSH, позволяет осуществлять через себя всю маршрутизацию без нагрузки на центральный процессор соединенного компьютера или на его память, в том числе маршрутизацию через абонентские устройства.

Первоначально система MeSH создавалась по заказу МО США как быстро разворачиваемая система связи и обмена цифровыми данными между мобильными объектами на поле боя.

В настоящее время аппаратура MeSH доступна и гражданским потребителям. Сеть MeSH наряду с мобильными может включать стационарные объекты. Передача данных внутри сети осуществляется на основе IP-технологии, что позволяет осуществлять обмен практически любым видом данных. Внутри сети возможна передача данных в чистом виде, передача видео изображений, а в будущем - и голосовая связь (с ограничениями, налагаемыми пакетной технологией).

Сеть MeSH состоит из трех основных уровней:

  • Первый уровень – абонентские терминалы стационарного и мобильного исполнения
  • Второй уровень – беспроводные маршрутизаторы, обеспечивающие необходимую зону покрытия при требуемой скорости. Обеспечивают транспорт и маршрутизацию потоков между абонентскими устройствами и точкой входа в наземную опорную сеть
  • Третий уровень – беспроводные точки доступа, обеспечивающие соединение беспроводного сегмента с наземной опорной сетью и также маршрутизацию потоков

Сети МЕА MeSH обладают следующими уникальными возможностями, которые отсутствуют в других системах беспроводного доступа:

Система МЕА MeSH использует технологию QDMA многократного доступа с квадратурным разделением сигнала. В системе имеется 4 радиоканала, из которых автоматически выбирается наиболее оптимальный канал. Смещенные каналы MEA MeSH относительно 802.11 позволяет ограничить возможные интерференции и повышают устойчивость к обычным интерференциям или преднамеренным помехам.

Как видно из схемы стандартные сети используют каналы с шагом 20МГц и эффективной полосой 5Мгц. В оборудовании МЕА MeSH программируется 4 канала с шириной полосы 20МГц. Для устойчивого функционирования системы производителем рекомендовано использование не менее 3 каналов. С учетом возможности программирования центральной частоты канала система позволяет сместить каналы таким образом, чтобы свести к минимуму возможные интерференции со стороны других широкополосных систем.

Система МЕА MeSH, используя данные о триангуляции, поступающие от сетевых устройств, позволяет определять местоположение объектов без использования системы GPS в относительных координатах и в географических координатах при наличии заданной абсолютной координаты инфраструктурных элементов сети.

Система МЕА MeSH предоставляет заказчику следующие выгоды:

  • Возможность создать интегрированную систему, позволяющую практически мгновенно получать данные для оперативного реагирования, управления и анализа;
  • Возможность получения данных для управления производственным процессом на уровне SCADA, MES, ERP, там, где необходим высокоскоростной обмен данными с мобильными объектами, что ранее нельзя было реализовать;
  • Получить ряд дополнительных уникальных функций, позволяющих сокращать потери, увеличивать производительность, повышать уровень безопасности технологических процессов;
  • Средние финансовые организационные затраты при необходимости расширения системы.

Таким образом, продукт предназначен для решения задач заказчика, связанных с достаточно быстрой передачей больших потоков данных, в тех случаях, когда задача не может быть решена с помощью стационарной сети передачи данных.

Пример реализованного проекта

Рассмотрим в качестве примера систему диспетчеризации горно-транспортного оборудования «Карьер», построенную с использованием технологии MESH нашим партнером компанией ВИСТ-Групп на Рудногорском руднике Коршуновского ГОКа в Иркутской обл.

Система состоит из следующих частей:

  1. Оборудования мобильных объектов – контроллеры, датчики, средства передачи данных, устанавливаемые на самосвалы, экскаваторы, бульдозеры и другую технику.
  2. Серверного оборудования и программного обеспечения.
  3. Рабочих мест пользователей системы (диспетчеры, маркшейдеры, ремонтные и технические службы и т.п.).
  4. Подсистемы передачи данных по радиоканалу.

Работа Системы включает весь цикл управления горным производством от планирования до управления и анализа работы.

Общая схема построения системы

Применение технологии Motorola MESH в качестве диспетчерской системы передачи данных решило как проблему оперативности доставки сообщений, так и позволяет практически без ограничений передавать данные диагностики работы машин и механизмов.

Опыт показал, что технология WI-FI не надежно работает в условиях подвижных сетей на горных работах. Сложность для данной технологии заключается в том, что часть объектов инфраструктуры отключается от питания, оборудование работает в условиях значительных радиопомех, возникающих при работе электрических машин. В этих условиях надежно работает только технология Motorola MESH, изначально рассчитанная для работы на поле боя.

Построение сети MESH на Коршуновском ГОКе

Схема построения сети

На схеме приведенной выше показано расположение объектов инфраструктуры. Типичное размещение роутера показано на рисунке:

На мобильных объектах оборудование установлено в штатных местах, предназначенных для установки радиостанций:

Результаты внедрения Motorola MESH

Состав оборудования:

  • Точка доступа – 1 шт. + 1 ЗИП
  • Роутер – 5 + 4 резерв на расширение площади покрытия.
  • Автомобильный модем – 23 + 2 ЗИП
  • Инфраструктура (Маршутизатор Cisco + ПО Mesh Manager).
  1. Система передачи данных с большим запасом обеспечила функционирование задач диспетчеризации с учетом перспективы развития.
  2. Заказчик получил возможность доступа в корпоративную вычислительную сеть в любой точке горных работ, что позволило коренным образом усовершенствовать механизм управления работами, строить различные информационные системы и системы безопасности.
  3. Со времени установки системы в ноябре 2007 года не было ни единого сбоя работы системы. Фактически, никаких работ по дополнительной настройке проводить не требовалось.

Выводы:

Системы Motorola являются наиболее современными и перспективными решениями по передаче ШПД с мобильных объектов.

Изначально разработанная для министерства обороны США, а также благодаря успешному опыту эксплуатации в суровых условиях Сибири данное решение является надежным выбором для Заказчиков, которым требуется гарантированная передача ШПД с мобильных объектов.