Экспериментальный Q-метр. Добротность колебательной системы Добротность от чего зависит

В статье расскажем что такое колебательный контур. Последовательный и параллельный колебательный контур.

Колебательный контур — устройство или электрическая цепь, содержащее необходимые радиоэлектронные элементы для создания электромагнитных колебаний. Разделяется на два типа в зависимости от соединения элементов: последовательный и параллельный .

Основная радиоэлементная база колебательного контура : Конденсатор, источник питания и катушка индуктивности.

Последовательный колебательный контур является простейшей резонансной (колебательной) цепью. Состоит последовательный колебательный контур, из последовательно включенных катушки индуктивности и конденсатора. При воздействии на такую цепь переменного (гармонического) напряжения, через катушку и конденсатор будет протекать переменный ток, величина которого вычисляется по закону Ома: I = U / Х Σ , где Х Σ — сумма реактивных сопротивлений последовательно включенных катушки и конденсатора (используется модуль суммы).

Для освежения памяти, вспомним как зависят реактивные сопротивления конденсатора и катушки индуктивности от частоты приложенного переменного напряжения. Для катушки индуктивности, эта зависимость будет иметь вид:

Из формулы видно, что при увеличении частоты, реактивное сопротивление катушки индуктивности увеличивается. Для конденсатора зависимость его реактивного сопротивления от частоты будет выглядеть следующим образом:

В отличии от индуктивности, у конденсатора всё происходит наоборот — при увеличении частоты, реактивное сопротивление уменьшается. На следующем рисунке графически представлены зависимости реактивных сопротивлений катушки X L и конденсатора Х C от циклической (круговой) частоты ω , а также график зависимости от частоты ω их алгебраической суммы Х Σ . График, по сути, показывает зависимость от частоты общего реактивного сопротивления последовательного колебательного контура.

Из графика видно, что на некоторой частоте ω=ω р , на которой реактивные сопротивления катушки и конденсатора равны по модулю (равны по значению, но противоположны по знаку), общее сопротивление цепи обращается в ноль. На этой частоте в цепи наблюдается максимум тока, который ограничен только омическими потерями в катушке индуктивности (т.е. активным сопротивлением провода обмотки катушки) и внутренним сопротивлением источника тока (генератора). Такую частоту, при которой наблюдается рассмотренное явление, называемое в физике резонансом, называют резонансной частотой или собственной частотой колебаний цепи. Также из графика видно, что на частотах, ниже частоты резонанса реактивное сопротивление последовательного колебательного контура носит емкостной характер, а на более высоких частотах — индуктивный. Что касается самой резонансной частоты, то она может быть вычислена при помощи формулы Томсона, которую мы можем вывести из формул реактивных сопротивлений катушки индуктивности и конденсатора, приравняв их реактивные сопротивления друг к другу:

На рисунке справа, изображена эквивалентная схема последовательного резонансного контура с учетом омических потерь R , подключенного к идеальному генератору гармонического напряжения с амплитудой U . Полное сопротивление (импеданс) такой цепи определяется: Z = √(R 2 +X Σ 2) , где X Σ = ω L-1/ωC . На резонансной частоте, когда величины реактивных сопротивлений катушки X L = ωL и конденсатора Х С = 1/ωС равны по модулю, величина X Σ обращается в нуль (следовательно, сопротивление цепи чисто активное), а ток в цепи определятся отношением амплитуды напряжения генератора к сопротивлению омических потерь: I= U/R . При этом на катушке и на конденсаторе, в которых запасена реактивная электрическая энергия, падает одинаковое напряжение U L = U С = IX L = IX С .

На любой другой частоте, отличной от резонансной, напряжения на катушке и конденсаторе неодинаковы — они определяются амплитудой тока в цепи и величинами модулей реактивных сопротивлений X L и X С .Поэтому резонанс в последовательном колебательном контуре принято называть резонансом напряжений. Резонансной частотой контура называют такую частоту, на которой сопротивление контура имеет чисто активный (резистивный) характер. Условие резонанса — это равенство величин реактивных сопротивлений катушки индуктивности и ёмкости.

Одними из наиболее важных параметров колебательного контура (кроме, разумеется, резонансной частоты) являются его характеристическое (или волновое) сопротивление ρ и добротность контура Q . Характеристическим (волновым) сопротивлением контура ρ называется величина реактивного сопротивления емкости и индуктивности контура на резонансной частоте: ρ = Х L = Х C при ω =ω р . Характеристическое сопротивление может быть вычислено следующим образом: ρ = √(L/C) . Характеристическое сопротивление ρ является количественной мерой оценки энергии, запасенной реактивными элементами контура — катушкой (энергия магнитного поля) W L = (LI 2)/2 и конденсатором (энергия электрического поля) W C =(CU 2)/2 . Отношение энергии, запасенной реактивными элементами контура, к энергии омических (резистивных) потерь за период принято называть добротностью Q контура, что в буквальном переводе с английского языка обозначает «качество».

Добротность колебательного контура — характеристика, определяющая амплитуду и ширину АЧХ резонанса и показывающая, во сколько раз запасы энергии в контуре больше, чем потери энергии за один период колебаний. Добротность учитывает наличие активного сопротивления нагрузки R .

Для последовательного колебательного контура в RLC цепях, в котором все три элемента включены последовательно, добротность вычисляется:

где R , L и C

Величину, обратную добротности d = 1 / Q называют затуханием контура. Для определения добротности обычно пользуются формулой Q = ρ / R , где R -сопротивление омических потерь контура, характеризующее мощность резистивных (активных потерь) контура Р = I 2 R . Добротность реальных колебательных контуров, выполненных на дискретных катушках индуктивности и конденсаторах, составляет от нескольких единиц до сотни и более. Добротность различных колебательных систем, построенных на принципе пьезоэлектрических и других эффектов (например, кварцевые резонаторы) может достигать нескольких тысяч и более.

Частотные свойства различных цепей в технике принято оценивать с помощью амплитудно-частотных характеристик (АЧХ), при этом сами цепи рассматривают как четырёхполюсники. На рисунках ниже представлены два простейших четырехполюсника, содержащих последовательный колебательный контур и АЧХ этих цепей, которые приведены (показаны сплошными линями). По вертикальной оси графиков АЧХ отложена величина коэффициента передачи цепи по напряжению К, показывающая отношение выходного напряжения цепи к входному.

Для пассивных цепей (т.е. не содержащих усилительных элементов и источников энергии), величина К никогда не превышает единицу. Сопротивление переменному току изображённой на рисунке цепи, будет минимально при частоте воздействия, равной резонансной частоте контура. В этом случае коэффициент передачи цепи близок к единице (определяется омическими потерями в контуре). На частотах, сильно отличающихся от резонансной, сопротивление контура переменному току достаточно велико, а следовательно, и коэффициент передачи цепи будет падать практически до нуля.

При резонансе в этой цепи, источник входного сигнала оказывается фактически замкнутым накоротко малым сопротивлением контура, благодаря чему коэффициент передачи такой цепи на резонансной частоте падает практически до нуля (опять-таки в силу наличия конечного сопротивления потерь). Наоборот, при частотах входного воздействия, значительно отстоящих от резонансной, коэффициент передачи цепи оказывается близким к единице. Свойство колебательного контура в значительной степени изменять коэффициент передачи на частотах, близких к резонансной, широко используется на практике, когда требуется выделить сигнал с конкретной частотой из множества ненужных сигналов, расположенных на других частотах. Так, в любом радиоприемнике при помощи колебательных цепей обеспечивается настройка на частоту нужной радиостанции. Свойство колебательного контура выделять из множества частот одну принято называть селективностью или избирательностью. При этом интенсивность изменения коэффициента передачи цепи при отстройке частоты воздействия от резонанса принято оценивать при помощи параметра, называемого полосой пропускания. За полосу пропускания принимается диапазон частот, в пределах которого уменьшение (или увеличение — в зависимости от вида цепи) коэффициента передачи относительно его значения на резонансной частоте, не превышает величины 0,7 (3дБ).

Пунктирными линиями на графиках показаны АЧХ точно таких же цепей, колебательные контуры которых имеют такие же резонансные частоты, как и для случая рассмотренного выше, но обладающие меньшей добротностью (например, катушка индуктивности намотана проводом, обладающим большим сопротивлением постоянному току). Как видно из рисунков, при этом расширяется полоса пропускания цепи и ухудшаются ее селективные (избирательные) свойства. Исходя из этого, при расчете и конструировании колебательных контуров нужно стремиться к повышению их добротности. Однако, в ряде случаев, добротность контура, наоборот, приходится занижать (например, включая последовательно с катушкой индуктивности резистор небольшой величины сопротивления), что позволяет избежать искажений широкополосных сигналов. Хотя, если на практике требуется выделить достаточно широкополосный сигнал, селективные цепи, как правило, строятся не на одиночных колебательных контурах, а на более сложных связанных (многоконтурных) колебательных системах, в т.ч. многозвенных фильтрах.

Параллельный колебательный контур

В различных радиотехнических устройствах наряду с последовательными колебательными контурами часто (даже чаще, чем последовательные) применяют параллельные колебательные контуры На рисунке приведена принципиальная схема параллельного колебательного контура. Здесь параллельно включены два реактивных элемента с разным характером реактивности Как известно, при параллельном включении элементов складывать их сопротивления нельзя — можно лишь складывать проводимости. На рисунке приведены графические зависимости реактивных проводимостей катушки индуктивности B L = 1/ωL , конденсатора В C = -ωC , а также суммарной проводимости В Σ , этих двух элементов, являющаяся реактивной проводимостью параллельного колебательного контура. Аналогично, как и для последовательного колебательного контура, имеется некоторая частота, называемая резонансной, на которой реактивные сопротивления (а значит и проводимости) катушки и конденсатора одинаковы. На этой частоте суммарная проводимость параллельного колебательного контура без потерь обращается в нуль. Это значит, что на этой частоте колебательный контур обладает бесконечно большим сопротивлением переменному току.

Если построить зависимость реактивного сопротивления контура от частоты X Σ = 1/B Σ , эта кривая, изображённая на следующем рисунке, в точке ω = ω р будет иметь разрыв второго рода. Сопротивление реального параллельного колебательного контура (т.е с потерями), разумеется, не равно бесконечности — оно тем меньше, чем больше омическое сопротивление потерь в контуре, т.е уменьшается прямо пропорционально уменьшению добротности контура. В целом, физический смысл понятий добротности, характеристического сопротивления и резонансной частоты колебательного контура, а также их расчетные формулы, справедливы как для последовательного, так и для параллельного колебательного контура.

Для параллельного колебательного контура, в котором индуктивность, емкость и сопротивление включены параллельно, добротность вычисляется:

где R , L и C - сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.

Рассмотрим цепь, состоящую из генератора гармонических колебаний и параллельного колебательного контура. В случае, когда частота колебаний генератора совпадает с резонансной частотой контура его индуктивная и емкостная ветви оказывают равное сопротивление переменному току, в следствие чего токи в ветвях контура будут одинаковыми. В этом случае говорят, что в цепи имеет место резонанс токов. Как и в случае последовательного колебательного контура, реактивности катушки и конденсатора компенсируют друг друга, и сопротивление контура протекающему через него току становится чисто активным (резистивным). Величина этого сопротивления, часто называемого в технике эквивалентным, определяется произведением добротности контура на его характеристическое сопротивление R экв = Q·ρ . На частотах, отличных от резонансной, сопротивление контура уменьшается и приобретает реактивный характер на более низких частотах — индуктивный (поскольку реактивное сопротивление индуктивности падает при уменьшении частоты), а на более высоких — наоборот, емкостной (т к реактивное сопротивление емкости падает с ростом частоты).

Рассмотрим, как зависят коэффициенты передачи четырехполюсников от частоты, при включении в них не последовательных колебательных контуров, а параллельных.

Четырехполюсник, изображенный на рисунке, на резонансной частоте контура представляет собой огромное сопротивление току, поэтому при ω=ω р его коэффициент передачи будет близок к нулю (с учетом омических потерь). На частотах, отличных от резонансной, сопротивление контура будет уменьшатся, а коэффициент передачи четырехполюсника — возрастать.

Для четырехполюсника, приведенного на рисунке выше, ситуация будет противоположной — на резонансной частоте контур будет представлять собой очень большое сопротивление и практически все входное напряжение поступит на выходные клеммы (т.е коэффициент передачи будет максимален и близок к единице). При значительном отличии частоты входного воздействия от резонансной частоты контура, источник сигнала, подключаемый к входным клеммам четырехполюсника, окажется практически закороченном накоротко, а коэффициент передачи будет близок к нулю.

Повышение Q контура
А. Партин, г. Екатеринбург

Основным показателей эффективности колебательного контура является добротность (Q). Физический смысл добротности - отношение запасенной в контуре энергии к рассеиваемой. Добротность зависит от потерь энергии в контуре, которые вызваны нагревом проводов, потерями в конденсаторе и катушке индуктивности, а также излучением электромагнитных волн в окружающую среду. Как бы идеально ни изготавливался колебательный контур, он обязательно имеет активное сопротивление.
Активное сопротивление катушки с ростом частоты возрастает и может увеличиваться в десятки раз. Это вызвано тем, что переменный ток высокой частоты вытесняется ближе к поверхности проводника (скин-эффект). Вот почему для увеличения добротности катушек их мотают многожильным изолированным проводом типа ЛЭШО. Добротность контурной катушки QL определяется:

где
- частота контура;
L - интдуктивность катушки;
RL - сопротивление потерь.
Добротность конденсатора Qc вычисляется по формуле


где
С - ёмкость конденсатора;
RС - сопротивление потерь.

Добротность контура Q тем выше, чем выше добротность его элементов и определяется выражением:

; .

где
ρ - характеристическое (волновое) сопротивление контура;
r=rC +rL - суммарное сопротивление контура.

Не надо забывать основную формулу, определяющую резонансную частоту fp колебательного контура:

Следовательно, добиваясь изменения одного параметра контура, например, L, чтобы не «уплывала» частота, произведение LC должно оставаться постоянным. Одну и ту же резонансную частоту можно получить при разных значениях индуктивности и ёмкости, подобно тому как одну и ту же площадь прямоугольника можно получить при разных соотношениях его сторон. Для того чтобы получить высокую добротность контура, выбор величин L и С требует определенных условий. При конструировании колебательных контуров с высокой добротностью предпочтение следует отдавать катушкам с большей индуктивностью. Большая индуктивность - это большое количество витков, а для высокой добротности провод следует брать как можно толще, что не всегда возможно.

Применение ферромагнитных сердечников позволяет уменьшить размеры катушек и повысить их добротность. Кроме того, с помощью подстроечных сердечников легко регулировать индуктивность катушек. Однако с ферромагнитными сердечниками появляется зависимость индуктивности и, соответственно, добротности катушек от величины протекающего тока. Особенно сильной эта зависимость окидывается в замкнутых магнитопроводах (тороидах). С увеличением тока происходит потеря магнитных свойств сердечника.

На рис.1 показан транзисторный резонансный усилитель на частоту 503 кГц, а в табл.1 приведены L, С и соответствующее значение коэффициента усиления.
На рис.2 показан заграждающий фильтр на эту же частоту (503 кГц), в табл.2 - номиналы LC-компонентов и коэффициента ослабления Кос фильтра.

Предлагаю пару практических советов , которые позволят довольно просто настроить колебательный контур на определенную частоту. Для этого требуется генератор стандартных сигналов (ГСС-6, Г4-18а, Г4-42 и др.) и любой низкочастотный осциллограф.
Способ 1 . Соединяем катушку и заранее отградуированный конденсатор переменной емкости в последовательную цепь (рис.За). Эта цепь включается в гнездо 1 В генератора (ГСС). Все аттенюаторы устанавливаются в максимальное положение. Перед измерением включаем генератор, выставляем необходимую частоту и замыкаем выход генератора (1 В) на корпус. Если аттенюаторы установлены на максимум, то стрелка внутреннего вольтметра установится практически на нулевое деление.
Подключаем настраиваемую цепь. Стрелка устанавливается на определенное деление шкалы, поскольку последовательный контур на частоте, отличной от резонансной, имеет достаточно большое сопротивление. Вращая ручку эталонного конденсатора, фиксируем тот момент, когда стрелка вольтметра отклонится влево (сопротивление контура на резонансной частоте уменьшается). Чем резче отклонение стрелки, тем выше добротность контура. Отсчитываем значение емкости конденсатора. Если величина емкости мала, а отклонения стрелки нет, то следует смотать некоторое количество витков провода с катушки.
Способ 2 . Собираем схему по рис.3б. С резистора R1 берется сигнал на осциллограф. Вращая ручку
конденсатора, фиксируем момент минимума сигнала на осциллографе.

Добротность колебательной системы

отношение энергии, запасённой в колебательной системе, к энергии, теряемой системой за один период колебания. Добротность характеризует качество колебательной системы (См. Колебательные системы), т.к. чем больше Д. к. с., тем меньше потери энергии в системе за одно колебание. Д. к. с. Q связана с логарифмическим Декремент ом затухания δ; при малых декрементах затухания Q ≈ π/δ. В колебательном контуре с индуктивностью L , ёмкостью C и омическим сопротивлением R Д. к. с.

где ω - собственная частота контура. В механической системе с массой m , жёсткостью k и коэффициентом трения b Д. к. с.

Добротность - количественная характеристика резонансных свойств колебательной системы, указывающая, во сколько раз амплитуда установившихся вынужденных колебаний (См. Вынужденные колебания) при Резонанс е превышает амплитуду вынужденных колебаний вдали от резонанса, т. е. в области столь низких частот, где амплитуду вынужденных колебаний можно считать не зависящей от частоты. На этом свойстве основан метод измерения Д. к. с. Величина добротности характеризует также и избирательность колебательной системы; чем больше добротность, тем у́же полоса частот внешней силы, которая может вызвать интенсивные колебания системы. Экспериментально Д. к. с. обычно находят как отношение частоты собственных колебаний к полосе пропускания системы, т. е. Q = ω/Δω. Численные значения Д. к. с.: для радиочастотного колебательного контура 30-100; для камертона 10000; для пластинки пьезокварца 100000; для объёмного резонатора СВЧ колебаний 100-100000.

Лит.: Стрелков С. П., Введение в теорию колебаний, 2 изд., М., 1964; Горелик Г. С., Колебания и волны, 2 изд., М., 1959.

В. Н. Парыгин.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Добротность колебательной системы" в других словарях:

    Большой Энциклопедический словарь

    Характеристика резонансных свойств системы, показывающая, во сколько раз амплитуда вынужденных колебаний при резонансе превышает амплитуду при его отсутствии. Чем выше добротность колебательной системы, тем меньше потери энергии в ней за период.… … Энциклопедический словарь

    Характеристика резонансных свойств системы, показывающая, во сколько раз амплитуда вынужденных колебаний при резонансе превышает амплитуду при его отсутствии. Чем выше Д. к. с., тем меньше потери энергии в ней за период. Добротность колебат.… … Естествознание. Энциклопедический словарь

    Величина, характеризующая резонансные свойства линейной колебат. системы; численно равна отношению резонансной частоты со к ширине резонансной кривой Dw на уровне убывания амплитуды в?2 раза: Q=w/Dw. Принято также выражать Д. колебат. системы… … Физическая энциклопедия

    Современная энциклопедия

    Добротность - колебательной системы, характеристика резонансных свойств системы, показывающая, во сколько раз амплитуда вынужденных колебаний при резонансе превышает их амплитуду вдали от резонанса. Чем выше добротность системы, тем меньше потери энергии в ней … Иллюстрированный энциклопедический словарь

    Добротность характеристика колебательной системы, определяющая полосу резонанса и показывающая, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний. Добротность обратно пропорциональна скорости… … Википедия - Собственная добротность колебательной системы. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь справочник. Под редакцией Ю.М. Горностаева. Москва, 2002] Тематики электросвязь, основные понятия EN unloaded Q … Справочник технического переводчика

Работая с эквалайзерами, мы чаще всего пользуемся всего двумя параметрами – Freq , который определяет центральную частоту фильтра и Gain , который определяет коэффициент усиления на центральной частоте фильтра. К этому списку можно добавить еще выбор типа фильтров эквалайзера, но практически во всех современных программных эквалайзерах этот выбор происходит автоматически и зависит от первоначального места размещения узла на частотном диапазоне. Если вы щелкнете мышью в области 20-30 Гц, скорее всего будет создан фильтр верхних частот; если создать узел в районе 60-70 Гц, скорее всего будет создана низкочастотная полка; если создать узел выше 100 Гц, будет создан колокол, и т.д. Конечно, для каждого эквалайзера значения частоты для определения типа фильтров будут разными, но тенденция рынка такова – современный эквалайзер должен определять типы кривых фильтров эквалайзера автоматически. Таким образом, у нас с вами остается всего два параметра (Freq, Gain), с которыми мы и осуществляем манипуляции. В этом списке чего-то не хватает, не так ли?

Наравне с параметрами центральной частоты и коэффициента усиления фильтров, существует еще один крайне важный параметр – добротность фильтров (Q ), который определяет ширину усиливаемой или ослабляемой полосы частот и определяется как отношение центральной частоты к ширине этой полосы, лежащей в пределах 3 дБ от коэффициента усиления на центральной частоте. Проще говоря, чем выше значение добротности, тем уже полоса частот, и чем ниже значение добротности, тем полоса частот шире. Все это, в первую очередь, касается колоколообразных фильтров. Для полочных и обрезных фильтров значение добротности определяет крутизну спада фильтров на центральной частоте. Таким образом, в ваших руках появляется инструмент, способный формировать частотные ландшафты – от пологих возвышенностей до отвесных скал.

Как же использовать параметр добротности (Q) на практике?

Существует несколько важных вещей, которые стоит учитывать при настройке параметра добротности:

1. Усиливая полосу частот, уменьшаем значение добротности

Основной задачей эквализации является, в первую очередь, получение оптимального баланса частот внутри отдельных инструментов, что в итоге способствует балансировке всего микса. Исходя из этого, любое усиление частот должно быть мягким и аккуратным. Человеческий слух очень цепко реагирует на слишком громкие диапазоны частот, поэтому для сохранения баланса звучания при усилении частот важно использовать именно широкие полосы, соответствующие низким значениям добротности.

2. Ослабляя полосу частот, увеличиваем значение добротности

Любой срез или ослабление частот влечет за собой достаточно существенное изменение внутреннего баланса инструмента и, соответственно, его звучания. С помощью ослабления частотных полос можно решить множество вопросов, включая подавление грязи, шума, бубнения, гула, ватности, свиста и других нежелательных призвуков, но в то же время при неправильной настройке добротности фильтров можно существенно навредить инструменту, сделав его звучание тусклым, тонким и вялым. Чтобы избежать этих неприятных вещей, достаточно увеличить значение добротности фильтров и ослаблять достаточно узкие диапазоны частот. Таким образом вы уберете лишнее, оставив при этом все полезные частоты. При использовании экстремально высоких значений добротности колоколообразного фильтра, можно создать режекторный фильтр, который отлично подходит для подавления какой-то конкретной частоты или узкой полосы частот. Это бывает полезно, когда нужно подавить очень сильные резонансы или же удалить статичный шум, например, гул от электросети на 50 или 60 Гц, в зависимости от региона, в котором была осуществлена запись.

3. Не используйте слишком высокие значения крутизны спада для обрезных фильтров

В свое время я мечтал найти такой эквалайзер, в котором был бы обрезной фильтр, способный срезать частоты под углом 90 градусов, то есть такой себе brickwall-фильтр. Но когда я нашел такой фильтр в IZotope Ozone и включил его, я понял, что он звучит очень немузыкально. Действительно, подавление частот ниже центральной частоты фильтра было впечатляющим – фильтр резал все, но это ли мне было нужно на самом деле? Я хотел получить чистый, аккуратный, точный и приятный для слуха срез, а в итоге получил красивую картинку для глаз и ужасный сдвиг фазы для ушей. Таким образом, я понял, что при настройке добротности (крутизны) обрезных фильтров нужно учитывать скорее не степень подавления частот, а скорее тандем подавление/музыкальность. Наиболее музыкально звучат обрезные фильтры с подавлением в 6 и 12 дБ на октаву. Если нужно использовать фильтры с подавлением в 24 дБ на октаву или выше, лучше применить линейнофазовые фильтры, которые не создают фазовых искажений. При использовании обрезных фильтров с высокой крутизной на отдельных дорожках особых проблем может и не возникнуть, но если вы используете такие фильтры на подгруппах или тем более на мастер-канале – будьте готовы к тому, что инструменты могут потерять локализацию, а стереокартина «поплыть».

4. Изучите документацию к вашим эквалайзерам

Во многих классических аналоговых эквалайзерах (например, API 550), и их эмуляциях соответственно, используется не постоянное значение добротности относительно усиления, а пропорциональное, то есть чем меньше коэффициент усиления, тем меньше значение добротности, и наоборот, чем выше коэффициент усиления, тем выше значение добротности. Учитывайте такие особенности в поведении отдельных приборов, чтобы процесс сведения был осмысленным, а не работой вслепую. Зависимость параметра Q от Gain также можно найти во многих программных эквалайзерах — Type 3 и Type 4 в Sonnox Oxford EQ работают «аналоговым» образом: различие этих режимов заключается в том, что при одинаковом уровне усиления, ширина полосы при низких значениях Gain для Type 3 будет уже, чем для Type 4, но при максимальном значении Gain ширина полосы для Type 3 будет такой же, как и для Type 4.

5. Полоса частот с низкой добротностью затрагивает не только узкую область вокруг центральной частоты фильтра

Вы задумывались когда-нибудь о том, почему при использовании высокочастотной полки на 10 кГц инструменты начинают звучать очень сочно, а не просто воздушно? Все дело в том, что чем сильнее вы будете усиливать высокочастотную полку с центральной частотой на 10 кГц, тем сильнее она будет захватывать нижестоящие частоты, тем самым усиливая не только высокие частоты, но и высокую средину. Усиление именно этих, более низких частот, а не верха от 10 кГц, и дает этот эффект яркости и сочности. Чем более пологие склоны полочных фильтров, тем больше будет захвачено частот в стороне от центральной частоты фильтра. Помните об этом и всегда спрашивайте себя о том, что же вы хотите усилить или ослабить в действительности? Вы хотите манипулировать всем этим огромным частотным диапазоном внутри полки или же на самом деле вас интересует какая-то конкретная частота рядом с ней?