Мостовая схема настройки антенн. Шумовой мост для настройки антенн

Генераторы стандартных сигналов (ГСС) обеспечивают на нагрузке 50 Ом напряжение 1…2 В, что явно недостаточно для работы с мостовыми измерителями сопротивления антенн. Для того чтобы использовать обычные мостовые измерители сопротивлений без их переделки, необходимо использовать широкополосный усилитель мощности. Схема такого усилителя приведена на рисунке.

Широкополосный усилитель обеспечивает не менее 1 Вт выходной мощности при работе совместно с ГСС в диапазоне частот от 1 до 30 МГц. Если уменьшить напряжение питания до 12 В и использовать номиналы деталей, приведенные в скобках, то выходная мощность усилителя падает до 600 мВт, что достаточно для работы со многими типами измерительных мостов. При сборке усилителя из исправных деталей и выставлении указанного на схеме тока коллектора, усилитель сразу работоспособен и не нуждается в наладке. Усилитель удобно собрать навесным монтажом.

Трансформатор Т1 выполнен на кольцевом магнитопроводе с размерами К7х4х2 из феррита проницаемостью 400…600. Обмотки содержат по 12 витков провода типа ПЭЛ-2-0,35, намотанных скруткой - одна скрутка на один сантиметр. Ферритовое кольцо можно использовать и больших размеров. Усилитель можно собрать в корпусе из фольгированного стеклотекстолита. Транзистор VT1 установлен на радиаторе. На корпус усилителя выводятся высокочастотные гнезда входа-выхода и выводы питания усилителя.

Иногда бывает неудобно использовать ГСС совместно с усилителем мощности Это могут быть случаи проведения измерений в полевых условиях; с ГСС, питаемым от батарей, и т.п В этом случае можно использовать мост с усилителем высокочастотного напряжения разбаланса.

Схема такого моста следующая:

Отличие ее от других схем мостовых измерителей в том, что высокочастотное напряжение детектируется и измеряется не сразу, а через трансформатор Т1 подается на вход транзисторного двухкаскадного усилителя и затем уже детектируется Это позволяет обойтись при настройке антенн уровнями ВЧ-напряжения, выдаваемого генератором стандартных сигналов Усилитель может быть собран на любых высокочастотных транзисторах типа КТ315, КТ312. АЧХ усилителя линейны до 40 МГц. Трансформатор Т1 содержит по 22 витка провода ПЭЛ-0,1 в каждой обмотке. Обмотки расположены симметрично на обеих половинках кольца размерами К10x7x4 проницаемостью 400…600

Калибровка прибора заключается в отметке на лимбе переменного резистора R2 сопротивления нагрузки Это лучше сделать, используя цифровой омметр. Показания лимба при балансировке моста и будут соответствовать сопротивлению измеряемой антенны.

Мостовой измеритель собран в корпусе из фольгированного стеклотекстолита Его монтаж должен быть максимально компактным и жестким Лимб переменного резистора для повышения точности измерений должен иметь максимально возможные размеры.

…..Проблема измерения КСВ на диапазонах 1296мГц и выше для многих до сих пор остается актуальной. Это, в частности, объясняется дороговизной или малым ассортиментом готовых устройств, предназначенных для этого и трудностью их изготовления в домашних условиях.

Мост №1

С этим же несколько лет назад столкнулся и я, настраивая антенну YAGI-DL6WU-mod на 23см. Изготовив несколько различных конструкций КСВ-метров (с петлями связи, мостовые …) на этот диапазон, я убеждался, что все они более или менее «врут». Это в основном проявлялось в искажении показаний при низких КСВ. Так, при подключении к такому измерителю вместо антенны образцовой нагрузки с промаркированным КСВ=1.05, - они редко «показывали» КСВ меньше 1,3...1,5.

Зато с антенной легко можно было добиться значений КСВ=1.0, что было ошибкой, ибо означало, что импеданс антенны, в данном случае, просто «удобен» для балансировки схемы... Из всех, опробованных мной устройств, более-менее хорошо заработала конструкция И.Нечаева, опубликованная в ж. «РАДИО»-12/2003г. - «Мостовой измеритель КСВ», и то, -только после того, как была удалена нижняя фольга платы, и добавлена небольшая конструктивная емкость в одно из плеч моста.

До этого я уже заметил, что самодельные КСВ-метры, собранные по схеме ВЧ-моста, лучше чем другие справляются со своими обязанностями на СВЧ-диапазонах. Применение SMD-компонентов и печатного монтажа для их изготовления, казалось-бы — идеальное решение, но индуктивности и ёмкости печатных дорожек, точнее — их малейшее отличие в плечах моста, на СВЧ приводит к разбалансу и требует мер по их компенсации, что усложняет изготовление и настройку таких мостов в домашних условиях.

Исходя из этого впоследствии и был изготовлен мой первый «правильный» СВЧ-мост на диапазон 23см, все детали которого «висят» в воздухе и закреплены на выводах трех «N»-разъемов, которые, в свою очередь, просто спаяны между собой торцами. Четвертой «стенкой» служит кусочек жести (0,5мм), с установленными на ней проходным конденсатором и припаянной к торцам разъемов. Конструкция, таким образом, не требует изготовления корпуса (см.рис.1), очень проста, а вся сборка может занять 2...3 часа. Малые размеры измерителя позволяют подключать его через короткий (и качественный!) ВЧ-переходник непосредственно к антенне и проверять КСВ непосредственно на её зажимах, не внося заметных влияний.

Принцип измерения КСВ прост: Подаем на мост такую мощность, чтобы на его входе она была в пределах 0,3....3Вт, при отключенной Zx. Ручкой «Чувствительность»(Бл.Изм.) устанавливаем стрелку на последние деление (100мкА). Затем подключаем исследуемую нагрузку (Zx) и считываем показания КСВ.
P.S. Здесь дотошный (и грамотный) читатель скажет: «Э-э-э, вот тут ты врешь!» И будет прав! Действительно, когда Zx отключена, источник сигнала (трансивер) «видит» входное сопротивление моста около 100ом, а когда Zx подключена — около 50ом. Это изменяет уровень ВЧ-напряжения на входе моста и результаты измерения искажаются.

Однако, на практике это почти не заметно, так как во-первых, мы соединяем трансивер со входом моста через кабель, имеющий затухание, и выполняющий, соответственно, роль аттенюатора «улучшающего» КСВ. Так, трансиверы на 1296МГц обычно имеют Рвых. около 10Вт, и, если соединить его с мостом через кабель типа RG-58 (или РК-50-2-11) длинной около 10м, то потери будут около 10дб и на мост придет около 1Вт. КСВ с таким кабелем в точке подключения к трансиверу будет близок к 1.0 независимо от того, подключена Zx или отключена.

Кроме того тонкий кабель (диам. 4...5мм) удобен при измерении КСВ на «зажимах антенны», т.к. не оказывает серьезной механической нагрузки на антенну. Но, как показала проверка с образцовыми нагрузками (с КСВ: 1.05/1.4/2.0), - более короткие кабели тоже не приводят к большим ошибкам в результатах измерений.

Таблица №1

Практические результаты измерений с мостом №1 и калиброванными нагрузками на диапазоне 1296МГц при разной входной мощности

P(мощность)

КСВ(эталонные)

Показания КСВ с мостом №1

Например, таблица 1 составлена при подключении моста к трансиверу «TS-790S» через отрезок кабеля с затуханием около 6дб.

Мой TS-790S на диапазоне 1296МГц имеет минимальную мощность 1,2Вт,а максимальную -около 12Вт, поэтому подключение его к мосту через кабель с таким затуханием обеспечивает весь диапазон мощностей, который с удовольствием «кушает» мост. Подавать на мост мощность менее 0,3Вт нежелательно, так как может привести к занижению показаний («улучшению» реального КСВ), а выше 3Вт - чревато перегревом и выходом из строя резисторов R1…R4.

О деталях:
N-разъёмы - импортные, под печатный монтаж с фланцами 17,5 х 17,5мм. Торцы фланцев зачищены напильником до меди. Центральные проводники обкушены и торчат на длину 2…3мм (фторопласт обрезан под основание и удалён);

R1…R4 - ОМЛТ-0,25Вт-100Ом. Выводы укорочены до 2…3мм;
C1, C2 - керамические, NPO, выводы укорочены до длин, необходимых на соединений;
D1 - BAT-62-03W. Шотки (0,4pF/40v/0.43v). Куплен в «RFmicrowave.it» (0,3Евро/шт.);
Zo -образцовая нагрузка 50Ом с N-разъёмом (DC-6GHz, 2W). Куплена в «RFmicrowave.it» (COD:«TC-N-04»; 9,8Евро/шт.)

Рис. 2. Схема ВЧ-моста для диапазона 1296МГц.

Добавление по мосту диапазона 1296МГц.
Для начинающих, - калибровка стрелочного прибора.
Аккуратно вскрываем прибор, чтобы был доступ к шкале (или составляем такую шкалу в виде таблицы). Маркируем шкалу значениями КСВ в соответствии с формулой:

КСВ=(A+B)/(A-B),
где
А - показания всей шкалы (когда Zx отключена),например:100мка.
B - показания КСВ (когда Zx подключена).

Итак, при шкале прибора 100мкА получится:

КСВ=1,0 → 0мкА;
КСВ=1,2 → 9,1мкА;
КСВ=1,5 → 20мкА;
КСВ=2,0 → 33,3мкА;
КСВ=2,5 → 42,9мкА;
КСВ=3,0 → 50мкА;
КСВ=5,0 → 66,7мкА.

Смело наносим эти значения на шкалу прибора. Желательно в измерительный блок установить прибор с большой шкалой - это облегчает считывание показаний при настройке антенны,- на улице, например.

P.S. Думаю что описанный мост работоспособен и на других ВЧ-диапазонах, но такие проверки я не проводил, т.к. измерителей на метровый и дециметровый диапазоны достаточно. Буду рад любой информации.

Мост №2

Мост№2 «вырос» из первого. «...А не рискнуть ли мне изготовить подобный мост для диапазонов 5,7 и 10ГГц??» - как-то подумалось мне. Результат на рис.4 и приведенной схеме (Рис.№3).

Утверждать, что данный измеритель такой же правильный как и предыдущий я не могу, так как, во-первых - у меня нет в наличии калиброванных SMA-нагрузок на эти частоты, а во-вторых - данная конструкция слишком «смела», чтобы претендовать на это, и создана скорее как эксперимент. Но то, что с накрученной в качестве Zx - SMA-нагрузкой, (-такой же, как применена в качестве Zo), стрелка измерителя устанавливается на значения КСВ не более 1,1 — это факт!

К тому-же, с помощью данного моста проверялись и настраивались зонды моих самодельных облучателей с контррефлекторами на обоих диапазонах. Динамика изменения КСВ четко видна, а не это-ли часто главное условие?.. Буду рад дополнительным сведениям и результатам экспериментов.

О деталях: С1,С2,С3 — 1пФ, «0806», NPO
R1...R4 — 100 Ом, «1206», 0.25Вт
D1 — BAT15-03W (0,3pF/4v/0,23v), здесь, наверное, можно было бы применить и BAT62-03W, но я решил поставить более высокочастотный.
Zo — нагрузка 50Ом, SMA (DC-18Ghz), 1W — куплена в «Rfmicrowave.it» (COD:«TC-SMA-11») 12,5Евро/шт.

Рис. 3. Схема ВЧ-моста для диапазонов 5.7 и 10ГГц

Для мостов №1 и №2 используется один Блок Измерения, поэтому замена мостов производиться с помощью разъемных соединителей (DB-9).

Как видно из фото (рис.№4), SMA-разъемы спаяны не торцами, а несколько ближе, - для обеспечения минимальных расстояний, необходимых для установки элементов. Поэтому аккуратность пайки здесь должна быть выше.

Придирчивый читатель скажет, что монтировать "таким образом" SMD-компоненты нельзя,- разрушаться при деформации! … Знаю, что нельзя..-но уж очень хочется!... По крайней мере,- раз 100!! уже перекручивал разъемы,- пока ничего не отвалилось!

Но соблюдать осторожность здесь, конечно, нужно, особенно — в недопущении боковых нагрузок на SMA-разъемы. R5 и R6 установлены с меньшими номиналами, чем в мосте №1. Это сделано для уменьшения нижней границы мощности при измерениях, потому что СВЧ-трансвертеры DB6NT обычно имеют около 200мВт на выходе, плюс -потери в соединительном кабеле.

С1-уменьшает входной КСВ измерителя.
R5 и R6-соединены со схемой кусочками тонкого медного провода (- жилки от МГТФ).

Рис. 5. Общий вид блока измерения.

Большое спасибо Сергею, RA3WND, за помощь в оформлении данной статьи, а Дмитрию, RA3AQ
- за прекрасный сайт!!! Желаю успехов и 73! Николай UA3DJG .

Этот мост не градуируется, не требует графиков частотных поправок, фиксированного уровня ВЧ и калибровки. КСВ определяется подбором вместо измеряемой нагрузки одного из эталонов из магазина эталонов шагом 10% до того же или близкого к нему показания (в моем случае - до того же уровня на экране Х1-50). При такой методике отсчет не зависит от частоты и от фактического (а не измеренного самим КСВ метром) прямого уровня сигнала. Мост не предназначен для измерения КСВ выше 4. На УКВ это не требуется. Обязательна только полная электрическая и конструктивная симметрия моста. Мост имеет заземленные разьемы и для нагрузки и для эталона,что весьма удобно и обеспечивает симметрию на частотах до 3000 МГц. Частотный диапазон ограничен только свойствами резисторов. Выше 1500 МГц лучше использовать СМD резисторы. Мост симметричен, поэтому не имеет значения, какой разьем использовать для эталона, какой для исследуемой нагрузки. Разьемы моста должны быть комплиментарны разьемам используемых сменных эталонных нагрузок. Какие либо переходники неизвестного качества между мостом и эталоном или подстроечные крутики в мосту и эталонах недопустимы.

Мост питается от усилителя мощности прибора Х1-50 в обход АРА (автом.регулятора амплитуды). За счет этого амплитуда ВЧ увеличена с 0,1 до 0,2...0,3 вольта. В один (любой) из разьемов Р вставляется эталон, в другой - исследуемая нагрузка (разьем с кабелем от нее). Сигнал разбаланса моста через предв. усилитель постоянного тока на ОУ подан на вход УВО. На частотах ниже 600 мгц остаточный разбаланс моста по КСВ не более 1.1, выше-не более 1,15. Широкополосность моста достигнута за счет симметрии и расположения эталона и нагрузки в заземленных плечах.
Мост выполнен в латунном корпусе 25х25х60 мм. Разьемы типа СР 50 или СР 75 пропаяны всей поверхностью к корпусу. Резисторы моста R1 и R3 МЛТ 1 вт могут быть от 50 до 75 ом, но их надо подобрать одинаковыми до 1%. Диоды типа Д18 и емкости 560 пф также желательно подобрать парами. Резисторы R2 и R4 МЛТ 0,25 одного номинала от 68к до 300к.

Мост можно сделать в виде отдельной конструкции и питать ВЧ напряжением 1...4 в от трансивера, а напряжение разбаланса подать на цифровой тестер типа М-838 или высокоомный УПТ (усилитель постоянного тока) и далее на стрелочный прибор или осциллограф.

О КСВ метрах на НО в виде проволчек, протянутых под оплеткой.
Сосредоточенные элементы на концах вторичных линий обычно подключают к ВНЕШНЕЙ стороне оплетки. Это ошибка, массово повторяющаяся в НО в виде проводников, протянутых под оплеткой. Отверстие, через которое пропущен под оплетку проводник настолько мало, что полностью изолирует внешнюю сторону оплетки от внутренней, к которой и должны были быть резисторы, диод, блок. емкости. В результате они оказываются подключенными к точкам с случайными потенциалами относит. внутренней стороны оплетки. Например, у штыревых антенн очень сложно избавиться от тока по оплетке, особенно наведенного. В результате КСВ метр, настроенный при отсутствии тока по внешней стороне оплетки на эквивалент, при подключении реальной антенны меняет показания.
В таких случаях отверстие делают больше и между его краем и вторичной линией ставят СМD элементы, закрытые колпачком - экраном и тем самым изолированные от потенциала внешней стороны оплетки, на которой кстати, могут быть и токи, наведенные посторонними источниками ЭМВ.
И о настройке КСВ метра на НО (это сложнее, чем просто крутить крутики на ноль) Измерения и испытания при конструировании радиолюбительских антенн. Бекетов В.И., Харченко К.П.

ЭТАЛОННЫЕ НАГРУЗКИ ДЛЯ МОСТА


Для работы с мостом я использую сменные эталонные нагрузки от 25 до 1000 ом из кабельных разьемов СР 50 или СР 75 для кабеля 7 мм (старые советские разьемы), из которых изьяты пружинные шайбы, короны и детали обжима кабеля. На их месте стоят резисторы МЛТ 2 вт с точностью 1%. С одной стороны вывод резистора укорочен и впаян в центральный стержень разьема, другой вывод откушен, шляпка зачищена от краски и облужена. Задняя гайка разьема завернута до входа в нее шляпки резистора на 3 мм и спаяна с ней. Резисторы подбираются из двухваттных МЛТ равного или меньшего номинала и подгоняются алмазным надфилем с пом. ЖКИ тестера типа М-838 до нужного сопротивления. У такой нагрузки можно рассчитывать на КСВ не хуже 1.1 на 145 и 436 МГц и 1.2 на 1296 МГц.



По тому же принципу можно сделать индикаторы на другие диапазоны частот. Для этого периметр петлевого вибратора должен быть около 1 длины волны на средней частоте диапазона. Двухсторонний фольгированный стеклотекстолит работает как емкость для выпрямленного ВЧ сигнала. На диапазонах ниже по частоте ее надо увеличить с помощью 2х дополнительных сосредоточенных керамических малогабаритных емкостей в 50...200 пф.

НАГРУЗКИ 50 и 75 ом для настройки и контроля УМ УКВ

Необходимы и при настройке выходных каскадов трансивера на передачу и для быстрого контроля мощности. В заводских поглотителях мощности УКВ 10..100 вт обычно применяются большие трубчатые резисторы 50 и 75 ом из которых можно сделать нагрузки для УМ с рассеиваемой мощностью в два- три раза больше, чем в поглотителях. Поглотители мощности обычно выполнены в виде конуса, в основании которого ВЧ разьем, внешняя поверхность ребристая для рассеивания тепла, а внутренняя несколько криволинейна. Резистор расположен по оси конуса и ближний к разьему торец жестко соединен с центральным штырьком, а противоположный с вершиной конуса. За счет постепенного сужения конуса по мере удаления от горячего конца образуется коаксиал с уменьшающимся к холодному концу волновым сопротивлением в той же мере, что и остающееся до холодного конца сопротивление резистора, что обеспечивает режим бегущих волн, в том числе и на частотах, где длина резистора относительно длин волн достаточно велика, обычно до частот в единицы гигагерц.
На рисунке пример конструкции нагрузки из резистора 120х24 мм и разьема СР 50(75)-167 для толстых кабелей. Резисторы 75х14 мм хорошо стыкуются с разьемами типа СР 50-33.


Коническая часть должна переходить в цилиндричскую за 5...10 мм до металлизированого кольца на резисторе. Центральный штырек разьема соединен пайкой с конусом через стержень, диаметр которого должен быть для нагрузок 50 ом в 3.5 раза, а для нагрузок 75 ом- 6.5 раз меньше внутреннего диаметра хвостовой части разьема. Заливка полиэтиленом, кроме фиксации втулки разьема нужна и для обеспечения этих волновых сопротивлений. Даже при не очень аккуратном изготовлении нагрузки имеют КСВ менее 1.15 до 150 мгц, не более 1.25 на 200 мгц и не более 1.5 на 250 мгц и далее рост до КСВ 2...3. Если вместо конуса стоит просто толстый провод, то рост КСВ начинается с частоты 30...40 мгц. За счет лучшего, чем в поглотителе мощности, охлаждения нагрузки могут рассеивать мощность в 1.3...1.5 раза больше, а при интенсивном обдуве в 2 раза, предположительно и больше. Во время работы с нагрузкой не забывайте, что в отличие от поглотителей часть мощности излучается нагрузкой, как антенной и дальний от разьема"горячий"конец на ощупь будет действительно горяч от воздействия ВЧ. С помощью миниатюрной лампочки можно оценивать и сравнивать отдаваемую мощность. Ее наличие или отсутствие на КСВ нагрузки практически не влияет.
Если более жестко зафиксировать (изолятором) точку контакта лампочки, то можно методом сравнения яркости свечения с такой же лампочкой, на которую подается регулируемое напряжение, после калибровки с помощью измерителя мощности измерять мощность с точностью 10% при уровнях 20...100% от максимально рассеиваемого (ниже- нет свечения лампочки).

МАЛОМОЩНЫЕ НАГРУЗКИ

Нагрузки для контроля мощности в единицы Ватт можно сделать по типу эталонных нагрузок для моста, повысив рассеиваемую мощность в 1.5...2 раза, если торец в торец припаять второй резистор. Здесь вместо родной гайки поставить воронку из жести с отверстием под шляпку резистора. Юбку воронки припаять к корпусу разьема. Здесь нужны резисторы 24+24 Ом для нагрузки 50 Ом или 36+39 ом для нагрузки 75 Ом. КСВ немного больше.
Вместо воронки можно припаять две полоски медной фольги шириной 5...8 мм,а между местом спайки двух резисторов и корпусом разьема миниатюрную лампочку СМН 20 ма 6 в. Получится нагрузка для быстрого контроля мощности от 1 до 15 вт с КСВ не более 1,2 на 145 и 1,4 на 436. Нижний резистор здесь взять 27 или 39 ом,верхний 24 или 39 ом соответственно. При навыке можно определять мощность +- 20...40%. При свечении лампочки ее сопротивление гораздо больше резистора и не шунтирует его.
Нагрузки из разьемов меньшего диаметра лучше делать из одноваттных резисторов 24+24 ом или 24+24+24 ом соотв. В общем случае КСВ будет минимальным, если стремиться к конструкции в виде одного или спаянных шляпками резисторов и конического экрана над ними в виде конуса диаметром от 2.3 для 50 ом и 3.6 для 75 ом у горячего конца и сходящемуся до диаметра шляпки резистора у холодного конца, где 2,3 и 3,6-отношение диаметра конуса к диаметру проводящего слоя резистора.

Об источниках ВЧ для КСВ метров

КСВ, который регистрирует КСВ метр, это отношение Uмакс / Uмин. в линии или иначе, Uпад.+Uотраж. / Uпад.-Uотраж. Если мы зондируем нагрузку (антенну) сигналом с частотой, на которой она согласована с волновым сопротивлением линии, отраженные волны отсутствуют и КСВ = 1. Зондируя антенну сигналом с частотой далеко вне ее диапазона частот, мы получим почти полное отражение сигнала от нее. Уровень отраженного сигнала выражается в виде коэффициента отражения Ко или, чаще, в виде КСВ = 1+Ко / 1-Ко. Что и фиксирует наш КСВ метр на этой частоте. Если мы зондируем антенну одновременно двумя сигналами, один с рабочей частотой, другой с частотой вне диапазона частот антенны, первый будет поглощен нагрузкой (антенной), второй отразится от неё, что тоже зарегистрирует КСВ метр в виде КСВ антенны > 1, т. е с погрешностью на измеряемой частоте. Отсюда следует, что зондирующий сигнал должен быть синусоидальным, т. е. не содержащим гармоник вообще или с уровнем ниже, чем допустимая погрешность КСВ метра. Такой сигнал можно получить или от добротного LC генератора или путем преобразования в синусоиду прямоугольного сигнала (нечто обратное обработке аналогового звукового сигнала в цифровой).

В таблице справа показан уровень основной частоты и гармоник до пятой в сигнале прямоугольной формы. В лучшем случае, при соотношении 50 /50, он составляет лишь 0,637. Остальные частоты, интегрированные в уровень 0,363, будут почти полностью отражены антенной, в результате КСВ метр покажет 1+0,363 / 1-0,363 = 2,14 вместо 1.0. (Практически, из за неполного отражения и затухания в кабеле, немного меньше).
При выборе схем источников зондирующего ВЧ сигнала для КСВ метра или готовых изделий надо учитывать, что точность измерений при наличии гармоник в сигнале падает. А готовые изделия с необработанным, прямоугольным сигналом (есть и такие), годятся лишь для измерения КСВ частотонезависимых нагрузок типа резисторов (с чем гораздо успешнее справляется любой обычный тестер), которые одинаково хорошо поглощают все частоты. Истинное значение КСВ они покажут только на таких нагрузках. Всё сказанное относится к КСВ метрам любого типа, мостовым, на направленных ответвителях, на токовых трансформаторах.
Есть и обратный способ, шумоподобный сигнал подается и на зондирование и на селективный приемник, но прямой сигнал сбалансирован мостом в ноль и приемник реагирует только на отраженный и отфильтрованный им (например см. журнал "Радио" 1978 г. № 6 стр. 19). Но и здесь та же фильтрация сигнала, но после зогдирования, селективным приемником.

При разработке этого измерительного прибора ставилась цель изготовить портативную простую конструкцию, обладающую достаточной точностью для практической настройки разнообразных KB антенн и имеющую автономное питание.

Прибор позволяет производить следующие измерения:

1. Определять резонансную частоту антенной системы а также резонансные частоты элементов в нее входящих (вибратора, директоров. рефлектора) в диапазоне 31...2.5 МГц.
2. Измерять активную составляющую входного сопротивления антенны в пределах от 0 до 5000м.
3. Измерять реактивные составляющие входного сопротивления антенны.
4. Судить о КСВ антенны, имея в виду отношение волнового сопротивления фидеры.о входному сопротивлению антенны.
5. Определять нужную длину фазосдвигающих линий с волновым сопротивлением этих линий до 500 Ом, а также коэффициенты укорочения коаксиальных кабелей и линий.

Определение всех параметров, кроме реактивного сопротивления, производится путем непосредственного считывания со шкал прибора. Величина реактивной составляющей высчитывается по общеизвестным формулам.

Прибор состоит из двух частей: высокочастотного моста и диапазонного генератора, объединенных в одну законченную конструкцию.

ВЫСОКОЧАСТОТНЫЙ МОСТ
Схема, изображенная на рис. 1, представляет собой классическую схему измерительного моста на сопротивлениях (в одном из плеч этого моста находится переменное сопротивление R1 с проградуированной шкалой). Имеется также-переменный конденсатор С1 емкостью 160 пф с проградуирован-ной шкалой, который с помощью двух закорачивающих перемычек может подключаться либо параллельно к переменному сопротивлению, либо к входу моста, что позволяет сбалансировать его при наличии комплексного сопротивления. По величине емкости переменного конденсатора можно вычислить величину реактивной составляющей нагрузки.

Мост балансируется с помощью микроамперметра на 50 мкА, который включается в диагональ. Для регулировки чувствительности служит переменное сопротивление R5, кроме того. с помощью тумблера SA1 параллельно микроамперметру РА1 включается шунтирующее сопротивление R6, загрубляющее чувствительность индикатора.

Монтаж высокочастотной части моста ведется максимально короткими отрезками голого луженого провода диаметром 1,5мм (см. фото)

ДИАПАЗОННЫЙ ГЕНЕРАТОР
Диапазонный генератор (рис. 2) перекрывает диапазон частот от 2,5 до 31 МГц.



Диапазонный генератор состоит из задающего генератора, собранного по схеме емкостной трехточки на транзисторе КП302А. С помощью переключателя контуры включаются в цепь затвора. Весь диапазон генератора разбит на пять поддиапазонов с целью получения четкой градуировки шкалы. Следующий каскад на транзисторе КП302А является истоковым повторителем и служит для согласования с оконечным каскадом генератора, собранного на транзисторе КТ606А.

В коллекторную цепь этого каскада включен широкополосный трансформатор на ферритовом кольце, с обмотки связи которого высокочастотное напряжение подается непосредственно на мост.

Для надежной работы моста напряжение на обмотке связи должно быть 1..Д В. Нагрузка обмотки составляет 100 Ом, хотя баланс моста достигается и при меньших напряжениях.

КОНСТРУКЦИЯ И ДЕТАЛИ.

Сопротивление R2 и R3 типа МЛТ необходимо подобрать с точностью до 1%. Переменный конденсатор С1 - с воздушным диэлектриком максимальной емкостью 160пф.Триммеры С2 и СЗ- тоже с воздушным диэлектриком.

Дроссели Др1 и Др2 - трехсекционные на керамическом основании. Можно применить любые дроссели с индуктивностью 1 ...2,5 мГ. Необходимо, чтобы они имели минимальную собственную емкость и не имели реэонансов в диапазоне частот генератора.

Микроамперметр РА1 - типа М4205. В диапазонном генераторе применен переменный конденсатор С1 емкостью 50 пф с воздушным диэлектриком, снабженный верньером.

Трансформатор Тр1 намотан тремя проводами по 9 витков в каждой секции на кольце ВЧ50 диаметром 14 мм.

Наладку прибора необходимо начать с генератора, имеющего минимум гармоник, так как наличие их ведет к ошибкам при измерениях.

Необходимо тщательно подобрать с помощью конденсаторов СЗ и С4 связь контура с транзистором VT1, а также подобрать режимы работы этого транзистора и VT2 и VT3.

После наладки диапазонного генератора приступают к наладке высокочастотного моста. Для этого к входу моста X1 подключают постоянное сопротивление 100..150 Ом, гнезда А-В и С- D при этом должны быть разомкнуты. Частота генератора может быть установлена любой, например, 15 МГц. Затем переменным сопротивлением R1 балансируют мост при максимальной чувствительности индикатора. Показания индикатора при этом могут отличаться от нуля. Затем, вращая триммер СЗ, добиваются точного баланса моста. При правильном монтаже и одинаковой величине сопротивлений R2 и R3 стрелка индикатора должна быть на нуле. Допустимы толь о весьма незначительные отклонения. Этой операцией нейтрализуется емкость

переменного сопротивления и емкость монтажа противоположных плеч моста. После этого вставляются перемычки А - В и С - D. а конденсатор С1 устанавливается в положение минимальной емкости. Не трогая сопротивления R1, триммером С2 снова добиваемся балансировки моста - на шкале конденсатора С1 отмечаем нулевую точку. Этой операцией нейтрализуется начальная емкость конденсатора С1. От нулевой точки градуируем шкалу конденсатора С1 через каждые 10 пф. На этом наладка завершается.

ПОЛЬЗОВАНИЕ ПРИБОРОМ.

Для измерения резонансных частот антенной системы и ее элементов, а также входного сопротивления, прибор подключается непосредственно к входу антенны коротким отрезком коаксиального кабеля. Если это затруднительно - полуволновым (для настраиваемого диапазона) отрезком кабеля.

Такая длина соединительного кабеля необходима, поскольку полуволновая линия передает параметры нагрузки без трансформации.

Для определения резонансной частоты антенны и ее входного сопротивления устанавливаем величину переменного сопротивления R1 равную приблизительно величине волнового сопротивления применяемого филера и, меняя частоту диапазонного генератора. находим частоту на которой индикатор покажет резкое уменьшение показаний.

Затем, изменяя величину сопротивления R1 и емкости С1. а также корректируя частоту генератора. добиваемся полной балансировки моста. Если мост сбалансировался при нулевом положении конденсатора С1, то это означает, что антенна на данной частоте имеет чисто активное входное сопротивление, которое считывается со шкалы сопротивления R I. Если же для баланса потребовалось изменение конденсатора С1, то это означает, что нагрузка имеет реактивную составляющую тем большую, чем большую емкость пришлось вводить при балансировке.

Если мост сбалансировался при соединении перемычками гнезд А-В и С- D, то это означает, что реактивная составляющая имеет емкостной характер. А если при соединении гнезд А - С и В - D - то индуктивный характер.

Резонансные частоты директоров и рефлектора измеряются аналогичным образом, но при этом нужно в широких пределах менять величину сопротивления R1 для нахождения резонансной частоты. Балансировка на этой частоте может быть не столь резкой. как при определении резонансной частоты антенны. Кроме того нужно иметь в виду. что при настройке антенн типа HB9CV. имеющих ям элемента, будут четко выражены три частоты: короткого элемента - с частотой выше рабочей, длинного элемента - с частотой ниже рабочей и резко выраженная рабочая частота антенны.

Кроме рабочей частоты антенны и ее основных элементов, возможно появление резонансных частот бума, оттяжек и т.п.

Для определения коэффициента укорочения коаксиальных кабелей и линий используется свойство полуволновой линии передавать величину нагрузки без трансформации. Поэтому берем отрезок кабеля или линии и закорачиваем накоротко один из концов. Другой конец включаем к входу моста, установив при этом на "0" сопротивление R1 и конденсатор С1. Найдя резонансную частоту, при которой мост сбалансируется, будем иметь в виду, что для этой частоты данная линия имеет электрическую длину в половину волны. Затем, пересчитав частоту генератора в длину волны, находим искомую половину волны. Измерив геометрическую длину отрезка кабеля или линии и вычислив ее отношение к данной полуволне получим коэффициент укорочения.

Измерительный мост высокой частоты представляет собой обычный мост Уитстона и может использоваться для определения степени согласованности антенны с линией передачи. Эта схема известна под многими названиями (например, «антенноскоп» и т. д.), но в основе ее всегда лежит принципиальная схема, изображенная на рис. 14-15.

По мостовой схеме протекают токи высокой частоты, поэтому все резисторы, используемые в ней, должны представлять чисто активные сопротивления для частоты возбуждения. Резисторы R 1 и R 2 подбираются в точности равными друг другу (с точностью 1% или даже больше), а само сопротивление не имеет особого значения. При сделанных допущениях измерительный мост находится в равновесии (нулевое показание измерительного прибора) при следующих соотношениях между резисторами: R 1 = R 2 ; R 1: R 2 =1:1; R 3 = = R 4 ; R 3: R 4 = 1: 1.

Если вместо резистора R 4 включить испытываемый образец, сопротивление которого требуется определить, а в качестве R 3 использовать отградуированное переменное сопротивление, то нулевое показание измерителя разбаланса моста будет достигнуто при значении переменного сопротивления, равном активному сопротивлению испытываемого образца. Таким образом можно непосредственно измерить сопротивление излучения или входное сопротивление антенны. При этом следует помнить, что входное сопротивление антенны чисто активно только в случае, когда антенна настроена, поэтому частота измерений всегда должна соответствовать резонансной частоте антенны. Кроме того, мостовая схема может использоваться для измерения волнового сопротивления линий передачи и их коэффициентов укорочения.

На рис. 14-16 показана схема высокочастотного измерительного моста, предназначенного для антенных измерений, предложенная американским радиолюбителем W 2AEF (так называемый «антенноскоп»).

Резисторы R 1 и R 2 обычно выбираются равными 150-250 ом ,и абсолютная их величина не играет особой роли, важно только, чтобы сопротивление резисторов R 1 и R 2 , а также емкости конденсаторов С 1 и С 2 были равны друг другу. В качестве переменного сопротивления следует использовать только безындуктивные объемные переменные резисторы и нив коем случае не проволочные потенциометры. Переменное сопротивление обычно 500 ом , а если измерительный мост используется для измерений только на линиях передачи, изготовленных из коаксиальных кабелей, то 100 ом , что позволяет более точно производить измерения. Переменное сопротивление градуируется, и при балансе моста оно должно быть равным с сопротивлением испытываемого образца (антенны, линии передачи). Дополнительное сопротивление R Ш зависит от внутреннего сопротивления измерительного прибора и требуемой чувствительности измерительной схемы. В качестве измерительного прибора можно использовать магнитоэлектрические миллиамперметры со шкалой 0,2; 0,1 или 0,05 ма . Дополнительное сопротивление следует выбирать по возможности высокоомным, так чтобы подключение измерительного прибора не вызывало значительного разбаланса моста. В качестве выпрямляющего элемента может использоваться любой германиевый диод.

Проводники мостовой схемы должны быть как можно короче для уменьшения их собственной индуктивности и емкости; при конструировании прибора следует соблюдать симметрию в расположении его деталей. Прибор заключается в кожух, разделенный на три отдельных отсека, в которых, как показано на рис. 14-16, помещаются отдельные элементы схемы прибора. Одна из точек моста заземляется, и, следовательно, мост несимметричен относительно земли. Поэтому мост наиболее подходит для измерения на несимметричных (коаксиальных) линиях передачи. В случае, если требуется использовать мост для измерения на симметричных линиях передачи и антеннах, то необходимо тщательно изолировать его от земли с помощью изолирующей подставки. Антенноскоп может применяться как в диапазоне коротких, так и ультракоротких волн, и граница его применимости в диапазоне УКВ в основном зависит от конструкции и отдельных схемных элементов прибора.

В качестве измерительного генератора, возбуждающего измерительный мост, вполне достаточно использовать гетеродинный измеритель резонанса. Следует иметь в виду, что высокочастотная мощность, поступающая на измерительный мост, не должна превышать 1 вт, и мощность, равная 0,2 вт, вполне достаточна для нормальной работы измерительного моста. Ввод высокочастотной энергии осуществляется с помощью катушки связи, имеющей 1-3 витка, степень связи которой с катушкой контура гетеродинного измерителя резонанса регулируется так, чтобы при отключенном испытываемом образце измерительный прибор давал полное отклонение. Следует учитывать, что при слишком сильной связи градуировка частоты гетеродинного измерителя резонанса несколько смещается. Чтобы не допустить ошибок, рекомендуется прослушивать тон измерительной частоты по точно отградуированному приемнику.

Проверка работоспособности измерительного моста осуществляется подключением к измерительному гнезду безындукционного резистора, имеющего точно известное сопротивление. Переменное сопротивление, при котором достигается баланс измерительной схемы, должно точно равняться (если измерительный мост правильно сконструирован) испытываемому сопротивлению. Эта же операция повторяется для нескольких сопротивлений при разных измерительных частотах. При этом выясняется частотный диапазон работы прибора. Вследствие того, что схемные элементы измерительного моста в диапазоне УКВ имеют уже комплексный характер, баланс моста становится неточным, и если в диапазоне 2 м его еще можно добиться, тщательно выполнив конструкцию моста, то в диапазоне 70 см рассмотренный измерительный мост совершенно неприменим.

После проверки работоспособности измерительного моста его можно использовать для практических измерений.

На рис. 14-17 изображена конструкция антенноскопа, предложенная W 2AEF.

Определение входного сопротивления антенны

Измерительное гнездо измерительного моста непосредственно подключается к зажимам питания антенны. Если резонансная частота антенны была измерена ранее с помощью гетеродинного измерителя резонанса, то мост питается высокочастотным напряжением этой частоты. Изменяя переменное сопротивление, добиваются нулевого показания измерительного прибора; при этом считываемое сопротивление равно входному сопротивлению антенны. Если же резонансная частота антенны заранее не известна, то частоту, питающую измерительный мост, изменяют До тех пор, пока не получают однозначного баланса измерительного моста. При этом частота, обозначенная на шкале измерительного генератора, равна резонансной частоте антенны, а сопротивление, полученное по шкале переменного сопротивления, равно входному сопротивлению антенны. Изменяя параметры схемы согласования, можно (не изменяя частоты возбуждения высокочастотного измерительного моста) получить заданное входное сопротивление антенны, контролируя его по антенноскопу.

Если проводить измерение непосредственно в точках питания антенны неудобно, то в этом случае между измерительным мостом можно включить линию, имеющую электрическую длину Я/2 или длину, кратную этой длине (2·λ/2, 3·λ/2, 4·λ/2 и т. д.) и обладающую любым волновым сопротивлением. Как известно, такая линия трансформирует сопротивление, подключенное к ее входу, в отношении 1: 1, и поэтому ее включение не отражается на точности измерения входного сопротивления антенны с помощью высокочастотного измерительного моста.

Определение коэффициента укорочения высокочастотной линии передачи

Точная длина λ/2 отрезка линии также может быть определена с помощью антенноскопа.

Достаточно длинный свободно подвешенный отрезок линии на одном конце замыкается, а другим концом подключается к измерительному гнезду моста. Переменное сопротивление устанавливается в нулевое положение. Затем медленно изменяют частоту гетеродинного измерителя резонанса, начиная с низких частот, и переходят к более высоким частотам, до тех пор пока не достигается баланс моста. Для этой частоты электрическая длина точно равна λ/2. После этого несложно определить коэффициент укорочения линии. Например, для отрезка коаксиального кабеля длиной 3,30 м при частоте измерений 30 Мгц (10 м ) достигается первый баланс моста; отсюда λ/2 равно 5,00 м . Определяем коэффициент укорочения: $$k=\frac{геометрическая длина}{эектрическая длина}=\frac{3,30}{5,00}=0,66.$$

Так как баланс моста имеет место не только при электрической длине линии, равной λ/2, но и при длинах, кратных ей, то следует найти второй баланс моста, который должен быть при частоте 60 Мгц. Длина линии для этой частоты равна 1λ. Полезно помнить, что коэффициент укорочения коаксиальных кабелей равен приблизительно 0,65, ленточных кабелей - 0.82 и двухпроводных линий с воздушной изоляцией - приблизительно 0,95. Так как измерение коэффициента укорочения с помощью антенноскопа несложно, то следует конструировать все схемы трансформаторов, используя методику измерения коэффициента укорочения, описанную выше.

Антенноскоп можно также использовать для проверки точности размеров λ/2 линии. Для этого к одному концу линии подключается резистор с сопротивлением меньше 500 ом , а другой конец линии подключается к измерительному гнезду моста; при этом переменное сопротивление (в случае, если линия имеет электрическую длину, в точности равную λ/2) равняется сопротивлению, подключенному к другому концу линии.

С помощью антенноскопа может быть определена также точная электрическая длина λ/4 линии. Для этого свободный конец линии не замыкается, и, изменяя частоту гетеродинного измерителя резонанса таким же образом, как было описано выше, определяют самую низкую частоту, при которой (при нулевом положении переменного сопротивления) достигается первый баланс мостовой схемы. Для этой частоты электрическая длина линии точно равна λ/4. После этого можно определить трансформирующие свойства λ/4 линии и рассчитать ее волновое сопротивление. Например, к концу четвертьволновой линии подключается резистор сопротивлением 100 ом .Изменяя переменное сопротивление, добиваются баланса моста при сопротивлении Z M = 36 ом . После подстановки в формулу $Z_{тр}=\sqrt{Z_{M}\cdot{Z}}$ получаем: $Z_{тр}=\sqrt{36\cdot{100}}=\sqrt{3600}=60 ом$. Таким образом, как мы видели, антенноскоп, несмотря на свою простоту, позволяет решить почти все задачи, связанные с согласованием линии передачи с антенной.